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Semilocal and nonlocal FSGO model potentials are given for group IV atomic cores, together
with a theoretical justification. The parameters were calibrated on experimental molecular
data. The model potentials are applied to the molecules CH,, SiH,, GeHy, CH;SiH,, CH;GeH,
and SiH;GeH;. Bond lengths and bond angles are in good agreement with the experimental
results.

The FSGO method is a simple ab initio method that correlates with chemical con-
cepts such as bonds, lone pairs and inner shells'. The many-electron wave function
is taken to be a single Slater determinant formed by double occupancy of Gaussian
orbitals which can float and vary in size so that the energy is minimized. These
orbitals represent the electron pairs of traditional Lewis electron theory? ™ *. General-
ly a subminimal basis set is used, i.e., each FSGO is occupied by two electrons.

From chemical experience it is well established that valence electrons determine
most chemical properties of atoms, molecules and solids. The effect of core electrons
is mainly to shield the nuclear charges and to provide an effective field for the valence
electrons. Therefore many methods based only on the treatment of valence electrons
have been developed. These methods take advantage of pseudopotentials and model
potentials, respectively. A necessary first approximation in all calculations to valence-
-electron-only problems is the ‘frozen core approximation’. In solving for the valence
wavefunction in this approximation one has to orthogonalize explicitly the valence
wavefunction to all core orbitals. This constraint may be removed if one projects
out the core states from the valence Hamiltonian. In pseudopotential methods core
projection operators are used for this purpose. Model potential methods include
a restriction of the functional form of the effective core potential. They contain
parameters which are adjusted to fit either theoretically or experimentally determined
observables. The pseudopotential and model potential methods are applied to the
calculation of various chemical and physical properties. Results of these calculations
and the problems to establish the pseudopotential and model potential methods
were reviewed in some papers’ ~13,
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The model potential method has been also applied to FSGO wavefunctions!4 ™24,
The FSGO model potential methods were used to calculate molecular geometries,
energy values and orbital energies. A comparison of FSGO and Hartree-Fock-
~Roothaan (HFR) wavefunctions and model potentials was carried out?’. The
conclusion is if the description of the core is improved by using a HFR-adjusted
model potential the use of FSGO for the valence electron density is not well ap-
propriate and poor results are obtained. Conversely, a FSGO model potential yields
satisfactory FSGO valence orbitals, but is not successful in HFR calculations.

THEORETICAL

The many-electron wavefunction is written as

Y= A[(p1a3 (plﬂ’ <o Py, qo\'ﬂ’ @V] ’ (1)

where {¢c, C = 1, ..., v} are the core orbitals, @, is the antisymmetrized valence
wavefunction, and A is a partial antisymmetrizer. If the core-valence orthogonality
condition

foc(r) Ou(ry, ..., rop) &% =0 (2)

holds the total electronic energy can be partitioned in core and valence energy. The
core energy has the standard form of a closed shell determinantal wavefunction:

Ecore =2 ;HCC + ;;(2JCC’ - KCC') » (3)

and the valence energy results from the following equation:

[ b ou Hov
Eval =2 ;HVV + ; ;(2JVV' - KVV’) + 2 ; ;(ZIVC - KVC) s (4)

where H;; is a matrix element of the one-electron Hamiltonian, J;; and K;; symbolize
the Coulomb and exchange integrals, respectively.

Since the FSGO’s y, are nonorthogonal the energy formulae for E,,,. and E,;; do
not apply. A Loewdin transformation of the x; to a set of orthogonal orbitals ¢,

(;Dj = ;xi(s—l/z)ij, (5)

may be used to derive the desired formulae, where S™1/2 is the inverse overlap
matrix of the y;. This transformation may be carried out separately for the valence
and core orbitals, if the overlap integrals between the core and valence orbitals are
assumed to be zero.
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In the expression of E,,; a semilocal or nonlocal model potential can be introduced
to describe the core-valence interaction. Using a semilocal model potential the fol-
lowing approximation is applied:

;{2%("1) - Ke(r)} ~

~ ZL:{Z,}[r1 — Ry + Z:: Vi(ry = Rg) Y PL(v. 63 v, ¢'s Rg)} (6)

where Z, symbolizes the charge of core electrons, Ry is the position of the core, J.
and K. are the Coulomb and exchange operators, respectively. In the last expression
P, symbolizes the semilocal projection operator:

leXV("z) = Ylm(v1¢§ RK) JS é” Y, (V'9 @' RK) XV("Q) dcos V' d¢’, (7)

where the Y, are the spherical harmonics and L, is the highest angular momentum
present in the core. ¥j(r; — Ry) was chosen as:

Vz("1 - Rx) = A, exp {—OCC(H = RK)Z} » (8)

where A, and &, are adjustable parameters. If one uses a nonlocal model potential
the following approximation can be inserted:

;{ZJC(rl) - Ke(r)} ~ ;ZK]rl — R¢|™" + ;Pc(rl, ry). 9)
P is the nonlocal projection operator which has to be applied as follows:

Pc("u ry) wfry) = ‘Pc("l) fgo @c(";) XV("'l) d’ry . (10)

Carrying out the Lowdin transformation of the ¢, to nonorthogonal core orbitals
¥k the sum of the projection operators can be rewritten:

2oc(rs) Joc(ri) adr) °ry =

= ;;;(S_“Z)Ck 4dry) f(s_l/z)cw 2dry) aAry) a3 (11)

The elements of the inverse overlap matrix remain constant if one applies the frozen
core approximation. Therefore the sum of the projection operators has the form

%;Akk%k(ﬂ) [lry) wAry) &ry (12)

where the A,,. are constants. This expression is reduced using additional approxima-
tions. The A4,;. was given the value zero if k is different from k'. Further on the ¥, are
divided in shells. The orbitals in a shell S get the same parameter 45. Accordingly
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the approximate expression is:
;As ;Xsrg("l) us(rt) xAry) drf (13)

The nonorthogonal core orbitals yg, are FSGO’s which are defined as:
2a5\*"* 2
xsulry) = o exp { —asi(ry — Rsi)*} s (14)

where ag, and the orbital position Ry, are used as parameters.
It should be remarked that the introduction of a local model potential is not
adequate to the nature of the nonlocal operator K.

RESULTS

The most effective core potentials were fitted on experimental or theoretical atomic
energy differences. Applying the FSGO method these procedures are not applicable
because one cannot calculate the energy of nonoccupied orbitals with it. The intro-
duction of HFR-adjusted potentials in the FSGO formalism did not give satisfactory
results. The electron densities of both methods in the region between the cores are
very different?®. Therefore the parameters in our model potentials were calibrated
on molecular data according to Nicolas and Durand?®.

The experimental geometries of the molecules ethane, disilane and digermane
are the reference data for the parameter A4; in the semilocal and nonlocal model
potential. The other parameters correspond to the results obtained earlier’®:?7,
In Table I the parameters are presented. In Table II the results of the calculation
are compared with the experimental reference data and FSGO results.

The model potentials obtained were applied to the molecules CH,, SiH,, GeH,,
CH,SiH,, CH,GeH; and SiH;GeH; (Table III). A comparison with experimental
and FSGO results is also given.

CONCLUSIONS

Using the semilocal model potential the bond lengths of the reference molecules
have a relative error smaller than 3-5% compared with the experimental results. The
error in the bond angles is more accurate than 0-7%;. They are always smaller than
the experimental values. The results in Table III can be summarized as follows.
The mean relative errors of bond lengths and bond angles compared with the experi-
mental values amount to 2-6% and 0-7%, respectively. The heavy atom-hydrogen
bond lengths of CH,, SiH, and GeH, are in better accordance with the experimental
values than the FSGO results.
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TasBLE 1

Parameters of the semilocal and nonlocal model potential

Semilocal model potential

Nonlocal model potential

Atom

o, ref.1® A, 4; R,, ref.27 a;, ref.?7
C 275 9-30 15:90 0:0 9:29988
Si 1-:06 9-30 15-90 00 57-35734
1-06 —035 334 0-01732 3-26732

Ge 1-03 9:30

1-03 —0-35

1-03 0-25

TabLE 11

Results of reference molecules (all data in atomic units)

Model potentials

Parameters Experiment*® FSGO!?
semilocal nonlocal
CyHg (D39)
cc 2-833 2834 2:899 2836
CH 2119 2122 2:065 2117
< HCH 108-3° 108-4° 109-1° 108-2°
E,., ~12:80610 — 13-00344 - -
Si;Hg (Dy4)
SiSi 4-450 4474 4-384 -
SiH 2756 2737 2:797 -
JHSiH 109-2° 109-1° 109-8° -
E,, — 1004296 — 1032302 - -
GeGe 4-553 - 4554 -
GeH 2784 - 2:886 —
JXHGeH  109:0° - 109-8° -
E,.,; —9-95557 - - -
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TabLe 111

Results of group 1V compounds (all data in atomic units)

Model potentials

Parameters Expzear'i;s’ FSGO!727
semilocal nonlocal ment
CH,
CH 2:108 2-112 2:07 2:106
E,, —689490  —6:98993 - -
SiH,
SiH 2:765 2737 2:76 2:795
E,. ~5:52497  —5-67429 - —
GeH,
GeH 2791 - 289 2:910
E, —~5:48333 - - -
CH,SiH,
Csi 3-447 3-451 3-53 -
SiH 2773 2:743 2:81 -
CH 2117 2:115 2-07 -
<HCH 108:7° 108-9° 107-7° -
< HSiH 108-8° 108-7° 108:2° -
E, —11:44328 —11:69782 - -
CH;GeH,
CGe 3:471 - 3-676 -
CH 2:146 - 2:047 -
GeH 2:799 - 2:899 -
<HCH 107:2° - 108-4° -
<XHGeH  1083° - 109-3° -
E,, —11:39062 - - -
SiH;GeH,
SiGe 4502 - 4454 -
SiH 2:759 - 2-806 -
GeH 2:783 - 2:889 -
XHSiH 109-0° - 108:2° -
<HGeH  109:2° - 109-3° -
E —9:99914 - — -
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The results obtained with the nonlocal model potential are similar to the semilocal
model potential results. The bond lengths and bond angles of the reference molecules
have a relative error which does not exceed 2-7% and —0'6%, respectively. The
mean relative errors in CH,, SiH, and CH,SiH, amount to 2:0% (bond lengths)
and +0-8% (bond angles).

The application of the nonlocal model potential to Ge-compounds is problematic
because the arrangement of the five FSGO’s representing the d-orbitals of the core
may be chosen in different ways.

Our model potentials do not show any indication of instability with respect to
a collapse of FSGO’s in the model potential center. The errors of the results obtained
originate mainly from the subminimal basis set and not from the features of the
model potentials used.
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