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Semilocal and nonlocal FSGO model potentials are given for group IV atomic cores, together 
with a theoretical justification. The parameters were calibrated on experimental molecular 
data. The model potentials are applied to the molecules CH,, SiH,, GeH,, CH,SiH,, CH,GeH3 
and SiH,GeH,. Bond lengths and bond angles are in good agreement with the experimental 
results. 

The FSGO method is a simple ab  initio method that correlates with chemical con- 
cepts such as bonds, lone pairs and inner shells’. The many-electron wave function 
is taken to be a single Slater determinant formed by double occupancy of Gaussian 
orbitals which can float and vary in size so that the energy is minimized. These 
orbitals represent the electron pairs of traditional Lewis electron t h e ~ r y ~ - ~ .  General- 
ly a subminimal basis set is used, i.e., each FSGO is occupied by two electrons. 

From chemical experience it is well established that valence electrons determine 
most chemical properties of atoms, molecules and solids. The effect of core electrons 
is mainly to shield the nuclear charges and to provide an effective field for the valence 
electrons. Therefore many methods based only on the treatment of valence electrons 
have been developed. These methods take advantage of pseudopotentials and model 
potentials, respectively. A necessary first approximation in all calculations to valence- 
-electron-only problems is the ‘frozen core approximation’. In solving for the valence 
wavefunction in this approximation one has to orthogonalize explicitly the valence 
wavefunction to all core orbitals. This constraint may be removed if one projects 
out the core states from the valence Hamiltonian. In pseudopotential methods core 
projection operators are used for this purpose. Model potential methods include 
a restriction of the functional form of the effective core potential. They contain 
parameters which are adjusted to fit either theoretically or experimentally determined 
observables. The pseudopotential and model potential methods are applied to the 
calculation of various chemical and physical properties. Results of these calculations 
and the problems to establish the pseudopotential and model potential methods 
were reviewed in some papers5-13. 

Collect. Czech. Chern. Comrnun. (Vol. 57) (1992) 



998 Walther, Gruendler : 

The model potential method has been also applied to FSGO w a v e f ~ n c t i o n s ' ~ - ~ ~ .  
The FSGO model potential methods were used to calculate molecular geometries, 
energy values and orbital energies. A comparison of FSGO and Hartree-Fock- 
-Roothaan (HFR) wavefunctions and model potentials was carried The 
conclusion is if the description of the core is improved by using a HFR-adjusted 
model potential the use of FSGO for the valence electron density is not well ap- 
propriate and poor results are obtained. Conversely, a FSGO model potential yields 
satisfactory FSGO valence orbitals, but is not successful in HFR calculations. 

THEORETICAL 

The many-electron wavefunction is written as 

'y = A [ W ,  CPlB, C o p ,  v,B; OY] 9 (1) 

where (qc, C = 1, . . ., Y} are the core orbitals, Ov is the antisymmetrized valence 
wavefunction, and A is a partial antisymmetrizer. If the core-valence orthogonality 
condition 

Jqc(rl) oY(r1, . . .) r24 d3r1 = 0 (4 
holds the total electronic energy can be partitioned in core and valence energy. The 
core energy has the standard form of a closed shell determinantal wavefunction: 

V v v  

and the valence energy results from the following equation: 

where Hi, is a matrix element of the one-electron Hamiltonian, J i j  and K i j  symbolize 
the Coulomb and exchange integrals, respectively. 

Since the FSGO's xi are nonorthogonal the energy formulae for E,,,, and Eva, do 
not apply. A Loewdin transformation of the x i  to a set of orthogonal orbitals qj, 

'pj  = c x i ( s - " 2 ) i j ,  
i 

(5) 

may be used to derive the desired formulae, where S- ' I2  is the inverse overlap 
matrix of the xi. This transformation may be carried out separately for the valence 
and core orbitals, if the overlap integrals between the core and valence orbitals are 
assumed to be zero. 
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I n  the expression of Eva, a semilocal or nonlocal model potential can be introduced 
to describe the core-valence interaction. Using a semilocal model potential the fol- 
lowing approximation is applied: 

Lmar 

where Z, symbolizes the charge of core electrons, R, is the position of the core, J ,  
and K, are the Coulomb and exchange operators, respectively. In the last expression 
P,, symbolizes the semilocal projection operator: 

P,,xV(ri) = Y,,(\I~+; R K )  J; Ji’ &,(v’, 4’;  R K )  j l v (4)  dcos v‘ d 4 ‘  9 (7) 

where the Ylm are the spherical harmonics and L,,, is the highest angular momentum 
present in the core. V,(r, - RK) was chosen as: 

K(rl - RK) = A ,  exp { -ac(rl - RK)’} , (8) 

where A ,  and ac are adjustable parameters. If one uses a nonlocal model potential 
the following approximation can be inserted: 

X { 2 J c ( r i )  - Kc(ri)) X x Z K l r l  - f C P ~ ( r * ,  6 ) .  (9)  
C K C 

P, is the nonlocal projection operator which has to be applied as follows: 

Carrying out the Lowdin transformation of the qC to nonorthogonal core orbitals 
zK the sum of the projection operators can be rewritten: 

The elements of the inverse overlap matrix remain constant if one applies the frozen 
core approximation. Therefore the sum of the projection operators has the form 

where the Akkp are constants. This expression is reduced using additional approxima- 
tions. The A k k ’  was given the value zero if k is different from k‘.  Further on the X k  are 
divided in shells. The orbitals in a shell S get the same parameter A,.  Accordingly 
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the approximate expression is: 

The nonorthogonal core orbitals XSk are FSGO's which are defined as: 

where ask and the orbital position RSk are used as parameters. 

adequate to the nature of the nonlocal operator 4. 
It should be remarked that the introduction of a local model potential is not 

RESULTS 

The most effective core potentials were fitted on experimental or theoretical atomic 
energy differences. Applying the FSGO method these procedures are not applicable 
because one cannot calculate the energy of nonoccupied orbitals with it. The intro- 
duction of HFR-adjusted potentials in the FSGO formalism did not give satisfactory 
results. The electron densities of both methods in the region between the cores are 
very different*'. Therefore the parameters in our model potentials were calibrated 
o n  molecular data according to Nicolas and Durand26. 

The experimental geometries of the molecules ethane, disilane and digermane 
are the reference data for the parameter Ai in the semilocal and nonlocal model 
potential. The other parameters correspond to the results obtained earlier'*327. 
In Table I the parameters are presented. In Table I1 the results of the calculation 
are compared with the experimental reference data and FSGO results. 

The model potentials obtained were applied to the molecules CH,, SiH,, GeH,, 
CH,SiH,, CH,GeH, and SiH,GeH, (Table 111). A comparison with experimental 
and FSGO results is also given. 

CONCLUSIONS 

Using the semilocal model potential the bond lengths of the reference molecules 
have a relative error smaller than 3.5% compared with the experimental results. The 
error in the bond angles is more accurate than 0.7%. They are always smaller than 
the experimental values. The results in  Table 111 can be summarized as follows. 
The mean relative errors of bond lengths and bond angles compared with the experi- 
mental values amount to 2.6% and 0.7%, respectively. The heavy atom-hydrogen 
bond lengths of CH,, SiH, and GeH, are in better accordance with the experimental 
values than the FSGO results. 
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TABLE I 
Parameters of the semilocal and nonlocal model potential 

Semilocal model potential Nonlocal model potential 
Atom 

aC, ref." A1 Ai R,,  ref.27 cli, ref.27 

C 2.75 9.30 15.90 0.0 9.29988 
Si 1.06 9.30 15.90 0.0 57.35734 

1-06 - 0.35 3.34 0.01732 3.26132 
Ge 1.03 9.30 

1.03 - 0.35 
1.03 0.25 

TABLE 11 
Results of reference molecules (all data in atomic units) 

Model potentials 

semilocal nonlocal 
Parameterr Experiment" FSGO" 

- cc 
CH 
QHCH 

- 

Eva I 

- 
SiSi 
SiH 
Q HSiH 

- 

EV. L 

- 
GeGc 
GeH 
Q HGeH 

- 

E,a I 

2.833 2,834 
2.119 2.122 

- 12.80610 - 13.00344 
108.3' 108.4' 

4.450 4.474 
2.756 2.737 

109.2' 109.1" 
- 1044296 - 10.32302 

4.553 - 
2.784 - 

109.0' - 
- 9.95551 - 

2,899 2.836 
2.065 2-117 

109*1° 108.2' 

4.384 

109.8' 
2,797 

- 

4.554 - 
2.886 - 

1 09.8O - 
- - 
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TABLE I11 
Results of group IV compounds (all data in atomic units) 

Model potentials 

semilocal nonlocal 
Parameters Experi- FSGOl7.27 

ment28*29 

.- 
CH 

E". I 

- 
SiH 

EV. I 

GeH 
EV.1 

- 
CSi 
SiH - 
CH 
+ HCH 
Q HSiH 

Ev.1 

CGe - 
CH 
GeH 
<HCH 
0: HGeH 

- 

E,. I 

- 
SiGc 
SiH 
GeH 
0: HSiH 
.;HGeH 

- 
- 

EV. I 

2.108 
- 6,89490 

2.765 
- 5.52491 

2.791 
- 5.48333 

3.441 
2.773 
2.111 

108.7" 
108.8" 
- 11.44328 

3.471 
2.146 
2.799 

107.2" 
108.3" 
- 11'39062 

4.502 
2.759 
2.783 

109.0" 
109-2" 
-9.99914 

CH4 
2.112 

- 6,98993 

SiH, 

2.737 
- 5.67429 

GeH, 
- 
- 

CH,SiH, 

3.451 
2.743 
2.115 

108.9" 
108.1" 
- 11'69782 

CH,GeH, 
- 
- 
- 
- 
- 
- 

SiH3GeH, 
- 
- 
- 
- 
- 
- 

2.07 
- 

2.76 
- 

2.89 
- 

3.53 
2.81 
2.01 

107.7" 
108.2" 
- 

3.676 
2.041 
2.899 

108.4" 
109.3" 
- 

4 4 5 4  
2.806 
2.889 

1082" 
109.3'' 
- 
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The results obtained with the nonlocal model potential are similar to the semilocal 
model potential results. The bond lengths and bond angles of the reference molecules 
have a relative error which does not exceed 2.7% and -0.6%’ respectively. The 
mean relative errors in CH4, SiH, and CH,SiH, amount to 2.0% (bond lengths) 
and +0.8% (bond angles). 

The application of the nonlocal model potential to Ge-compounds is problematic 
because the arrangement of the five FSGO’s representing the d-orbitals of the core 
may be chosen in different ways. 

Our model potentials do not show any indication of instability with respect to 
a collapse of FSGO’s in the model potential center. The errors of the results obtained 
originate mainly from the subminimal basis set and not from the features of the 
model potentials used. 
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